miR-455-5p enhances 5-fluorouracil sensitivity in colorectal cancer cells by targeting PIK3R1 and DEPDC1

Our previous study has demonstrated that miR-455-5p was a tumor suppressor in colorectal cancer (CRC). This study aimed to investigate the role of miR-455-5p in 5-fluorouracil (5-Fu) in CRC. The expression of miR-455-5p, PIK3R1, and DEPDC1 was analyzed in HT-29 cells after treatment with different c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open medicine (Warsaw, Poland) Poland), 2022-04, Vol.17 (1), p.847-856
Hauptverfasser: Lou, Tingting, Zhang, Luqing, Jin, Zongshan, Miao, Chundi, Wang, Jinqiu, Ke, Kongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our previous study has demonstrated that miR-455-5p was a tumor suppressor in colorectal cancer (CRC). This study aimed to investigate the role of miR-455-5p in 5-fluorouracil (5-Fu) in CRC. The expression of miR-455-5p, PIK3R1, and DEPDC1 was analyzed in HT-29 cells after treatment with different concentrations (0, 0.5, 2.5, and 12.5 μM) of 5-Fu. The effects of miR-455-5p on cell proliferation and apoptosis were analyzed by CCK-8 and flow cytometry. PIK3R1 and DEPDC1 were overexpressed to measure the mechanism of miR-455-5p on 5-Fu sensitivity. And the direct binding between miR-455-5p and DEPDC1 was detected by a dual-luciferase reporter assay. We found that miR-455-5p decreased, while PIK3R1 and DEPDC1 increased after 5-Fu treatment. miR-455-5p mimic significantly suppressed cell viability and elevated cell apoptosis in 5-Fu-treated HT-29 cells, whereas miR-455-5p inhibitor showed the opposite effects. Overexpression of PIK3R1 and DEPDC1 could attenuate the effects of miR-455-5p mimic on the viability and apoptosis of 5-Fu-treated cells. miR-455-5p could directly bind to DEPDC1 in HT-29 cells. In conclusion, miR-455-5p enhanced 5-Fu sensitivity by targeting PIK3R1 and DEPDC1 in CRC. This study provides a novel role of miR-455-5p in CRC and restoring miR-455-5p might be a therapeutic strategy to enhance chemosensitivity to 5-Fu.
ISSN:2391-5463
2391-5463
DOI:10.1515/med-2022-0474