Preparation of Monoclonal Antibody and Development of Indirect Competitive Enzyme-Linked Immunosorbent Assay and Fluorescence-Linked Immunosorbent Assay for Detecting 3-Amino-5-methylmorpholino-2-oxazolidinone (AMOZ) in Edible Animal Tissue

To monitor the illegal used of furaltadone, a highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and fluorescence-linked immunosorbent assay (FLISA) based on a monoclonal antibody (mAb) were developed for the detection of 3-amino-5-methylmorpholino-2-oxazolidinone (AM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-07, Vol.26 (14), p.4243
Hauptverfasser: Xie, Yong, Wang, Yarong, Yan, Xueling, Gan, Lu, Le, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To monitor the illegal used of furaltadone, a highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and fluorescence-linked immunosorbent assay (FLISA) based on a monoclonal antibody (mAb) were developed for the detection of 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ), the major metabolite of furaltadone in animal tissues. The highly specific mAb, which was very sensitive to a nitrophenyl derivative of AMOZ (2-NP-AMOZ) with IC values of 0.11 and 0.09 ng/mL for ic-ELISA and FLISA, respectively, was selected for the development of immunoassays. For both the ic-ELISA and FLISA for AMOZ-spiked experiments, acceptable recovery rates of 81.1-105.3% and coefficients of variation of 4.7-9.8% were obtained. In addition, results from both ic-ELISA and FLISA methods for spiked samples' data showed excellent correlation coefficients ranging from 0.9652 to 0.9927. Meanwhile, the proposed ic-ELISA and FLISA for thirty spiked samples were confirmed by standard LC-MS/MS with high correlation coefficients of 0.9911 and 0.9921, respectively. These results suggest that the developed ic-ELISA and FLISA are valid and cost-effective tools for high-throughput monitoring methods for AMOZ residues in animal tissues.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26144243