Quantitative prediction of grain boundary misorientation effect on twin transmission in hexagonal metals

Intergranular twinning shear transmission through twin-twin accommodation, which plays an important role on microstructure evolution, is often observed in deformed hexagonal metals. The shear transmitted between two connected twins is m′s, where m′ is the geometrical compatibility factor and s is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2020-07, Vol.192, p.108745, Article 108745
Hauptverfasser: Song, Xiao, Luo, Jinru, Shi, Zhangzhi, Zhuang, Linzhong, Qiao, Yi, Zhang, Jishan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intergranular twinning shear transmission through twin-twin accommodation, which plays an important role on microstructure evolution, is often observed in deformed hexagonal metals. The shear transmitted between two connected twins is m′s, where m′ is the geometrical compatibility factor and s is the magnitude of the original shear. However, the quantitative correlation between the grain boundary misorientation (GBM) and m′ factor for shear transmission is unknown. In the present study, we developed an m′-GBM map to tackle this problem. The map is applied to {112¯2}–{112¯2}, {112¯2}–{112¯4} and {112¯4}–{112¯4} twin pairs in Ti, which have rarely been reported before but are profuse in a cryorolled state. Favorable GBM for the formation of these twin pairs is revealed by the map. Specifically, the map shows that low GBM angles (
ISSN:0264-1275
1873-4197
DOI:10.1016/j.matdes.2020.108745