An Illusion of Barriers to Gene Flow in Suburban Coyotes (Canis latrans): Spatial and Temporal Population Structure across a Fragmented Landscape in Southern California

Carnivores with large home ranges are especially vulnerable to habitat fragmentation. As coyotes (Canis latrans) are often found living in highly modified landscapes, it is unclear how urban and suburban development impact gene flow between their populations. This study evaluated gene flow among coy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity (Basel) 2023-04, Vol.15 (4), p.498
Hauptverfasser: Bird, Savanah, Monzón, Javier D, Meyer, Wallace M, Moore, Jonathan E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carnivores with large home ranges are especially vulnerable to habitat fragmentation. As coyotes (Canis latrans) are often found living in highly modified landscapes, it is unclear how urban and suburban development impact gene flow between their populations. This study evaluated gene flow among coyotes inhabiting California sage scrub fragments within the highly developed Pomona Valley, California. We genotyped microsatellites from scat samples collected from four study sites to examine population structure between coyotes separated by a major freeway, coyotes separated by suburban development, and finally, coyotes in contiguous, natural habitat sites over 15 months. Though coyotes from all four sites were genetically distinct, near-complete turnover of individuals in sites and examination of temporal genetic structure and relatedness within one site indicated the movement of family groups through natural fragments over time. Thus, we argue that solely examining spatial genetic structure may create the illusion of genetic barriers among coyote populations where they may not exist, and that incorporating temporal components of genetic variation is critical to understanding gene flow across space and time in highly mobile animals. Understanding how to better study and manage coyotes, an apex predator, is key to the conservation of the endangered California sage scrub ecosystem.
ISSN:1424-2818
1424-2818
DOI:10.3390/d15040498