Shading and Water Addition Alleviate the Elemental Limitations of the Early Restoration Community in a Stressful Environment

Shading and water addition are essential management measures to improve seed germination and early seedling survival; however, little is known about their effects on leaf stoichiometry and nutrient status. We established 90 plant communities with shading and water addition gradients on a rocky hill;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2024-09, Vol.13 (18), p.2626
Hauptverfasser: Chen, Fajun, Zhao, Gaojuan, Shen, Youxin, Zhu, Hong, Li, Zhenjiang, Tan, Beilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shading and water addition are essential management measures to improve seed germination and early seedling survival; however, little is known about their effects on leaf stoichiometry and nutrient status. We established 90 plant communities with shading and water addition gradients on a rocky hill; leaves of their dominant woody plant species were collected to measure elemental concentrations, and then, stoichiometric variation and nutrient status were analysed. The results showed that the overall effects of shading and water addition significantly altered the concentrations and ratios of nutrient elements; shading largely affected leaf K and P, while water addition mainly affected leaf N and P. The interactions between shading and water addition were significant for most species but disappeared at the community level. Consequently, the nutrient status in leaves was improved by promoting the concentrations and balances of nutrient elements. However, the responses to shading and water addition were marked by species-specific differences, with some plants forming a sensitive group and others distinguished by conservatism. Our findings show that management of the physical environment could improve nutrient element utilization in leaves and alleviate the nutrient limitations. For our site conditions, mild shading (25-35%) and adequate water addition (30 L·m ) in the early stage of vegetation restoration is recommended to advance community assembly by improving nutrient physiology, directly diminishing the stress of water scarcity and excessive irradiation. These findings explore the underlying mechanisms of shading and water addition that could promote community development and provide guidance for restoration practice.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13182626