Proteomic identification of cryostress in epididymal spermatozoa
Background: Cryopreservation of epididymal spermatozoa is important in cases in which it is not possible to collect semen using normal methods, as the sudden death of an animal or a catastrophic injury. However, the freezing and thawing processes cause stress to spermatozoa, including cold shock, os...
Gespeichert in:
Veröffentlicht in: | Journal of Animal Science and Biotechnology 2016-11, Vol.8 (2), p.478-489, Article 67 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Cryopreservation of epididymal spermatozoa is important in cases in which it is not possible to collect semen using normal methods, as the sudden death of an animal or a catastrophic injury. However, the freezing and thawing processes cause stress to spermatozoa, including cold shock, osmotic damage, and ice crystal formation,thereby reducing sperm quality. We assessed the motility(%), motion kinematics, capacitation status, and viability of spermatozoa using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining.Moreover, we identified proteins associated with cryostress using a proteomic approach and performed western blotting to validate two-dimensional electrophoresis(2-DE) results using two commercial antibodies.Results: Cryopreservation reduced viability(%), motility(%), straight-line velocity(VSL), average path velocity(VAP), amplitude of lateral head displacement(ALH), and capacitated spermatozoa, whereas straightness(STR)and the acrosome reaction increased after cryopreservation(P 3 fold, P < 0.05) before and after cryopreservation. The proteins differentially expressed following cryopreservation are putatively related to several signaling pathways, including the ephrinR-actin pathway, the ROS metabolism pathway, actin cytoskeleton assembly, actin cytoskeleton regulation,and the guanylate cyclase pathway.Conclusion: The results of the current study provide information on epididymal sperm proteome dynamics and possible protein markers of cryo-stress during cryopreservation. This information will further the basic understanding of cryopreservation and aid future studies aiming to identify the mechanism of cryostress responses. |
---|---|
ISSN: | 1674-9782 2049-1891 2049-1891 |
DOI: | 10.1186/s40104-016-0128-2 |