Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods

Ensemble hydrologic forecasting which takes advantages of multiple hydrologic models has made much contribution to water resource management. In this study, four hydrological models (the Xin’anjiang model (XAJ), Simhyd, GR4J, and artificial neural network (ANN) models) and three ensemble methods (th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open Geosciences 2021-04, Vol.13 (1), p.401-415
Hauptverfasser: Wang, Jie, Wang, Guoqing, Elmahdi, Amgad, Bao, Zhenxin, Yang, Qinli, Shu, Zhangkang, Song, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ensemble hydrologic forecasting which takes advantages of multiple hydrologic models has made much contribution to water resource management. In this study, four hydrological models (the Xin’anjiang model (XAJ), Simhyd, GR4J, and artificial neural network (ANN) models) and three ensemble methods (the simple average, black box-based, and binomial-based methods) were applied and compared to simulate the hydrological process during 1979–1983 in three representative catchments (Daixi, Hengtangcun, and Qiaodongcun). The results indicate that for a single model, the XAJ model and the GR4J model performed relatively well with averaged Nash and Sutcliffe efficiency coefficient (NSE) values of 0.78 and 0.83, respectively. For the ensemble models, the results show that the binomial-based ensemble method (dynamic weight) outperformed with water volume error reduced by 0.8% and NSE value increased by 0.218. The best performance on runoff forecasting occurs in the Hengtang catchment by integrating four hydrologic models based on binomial ensemble method, achieving the water volume error of 2.73% and NSE value of 0.923. Finding would provide scientific support to water engineering design and water resources management in the study areas.
ISSN:2391-5447
2391-5447
DOI:10.1515/geo-2020-0239