Semi-Supervised Learning for Multi-View Data Classification and Visualization
Data visualization has several advantages, such as representing vast amounts of data and visually demonstrating patterns within it. Manifold learning methods help us estimate lower-dimensional representations of data, thereby enabling more effective visualizations. In data analysis, relying on a sin...
Gespeichert in:
Veröffentlicht in: | Information (Basel) 2024-07, Vol.15 (7), p.421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data visualization has several advantages, such as representing vast amounts of data and visually demonstrating patterns within it. Manifold learning methods help us estimate lower-dimensional representations of data, thereby enabling more effective visualizations. In data analysis, relying on a single view can often lead to misleading conclusions due to its limited perspective. Hence, leveraging multiple views simultaneously and interactively can mitigate this risk and enhance performance by exploiting diverse information sources. Additionally, incorporating different views concurrently during the graph construction process using interactive visualization approach has improved overall performance. In this paper, we introduce a novel algorithm for joint consistent graph construction and label estimation. Our method simultaneously constructs a unified graph and predicts the labels of unlabeled samples. Furthermore, the proposed approach estimates a projection matrix that enables the prediction of labels for unseen samples. Moreover, it incorporates the information in the label space to further enhance the accuracy. In addition, it merges the information in different views along with the labels to construct a consensus graph. Experimental results conducted on various image databases demonstrate the superiority of our fusion approach compared to using a single view or other fusion algorithms. This highlights the effectiveness of leveraging multiple views and simultaneously constructing a unified graph for improved performance in data classification and visualization tasks in semi-supervised contexts. |
---|---|
ISSN: | 2078-2489 2078-2489 |
DOI: | 10.3390/info15070421 |