Easy—Ensemble Augmented-Shot-Y-Shaped Learning: State-of-the-Art Few-Shot Classification with Simple Components

Few-shot classification aims at leveraging knowledge learned in a deep learning model, in order to obtain good classification performance on new problems, where only a few labeled samples per class are available. Recent years have seen a fair number of works in the field, each one introducing their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of imaging 2022-06, Vol.8 (7), p.179
Hauptverfasser: Bendou, Yassir, Hu, Yuqing, Lafargue, Raphael, Lioi, Giulia, Pasdeloup, Bastien, Pateux, Stéphane, Gripon, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Few-shot classification aims at leveraging knowledge learned in a deep learning model, in order to obtain good classification performance on new problems, where only a few labeled samples per class are available. Recent years have seen a fair number of works in the field, each one introducing their own methodology. A frequent problem, though, is the use of suboptimally trained models as a first building block, leading to doubts about whether proposed approaches bring gains if applied to more sophisticated pretrained models. In this work, we propose a simple way to train such models, with the aim of reaching top performance on multiple standardized benchmarks in the field. This methodology offers a new baseline on which to propose (and fairly compare) new techniques or adapt existing ones.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging8070179