Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments
Extracting ubiquitous atmospheric water is a sustainable strategy to enable decentralized access to safely managed water but remains challenging due to its limited daily water output at low relative humidity (≤30% RH). Here, we report super hygroscopic polymer films (SHPFs) composed of renewable bio...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-05, Vol.13 (1), p.2761-2761, Article 2761 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracting ubiquitous atmospheric water is a sustainable strategy to enable decentralized access to safely managed water but remains challenging due to its limited daily water output at low relative humidity (≤30% RH). Here, we report super hygroscopic polymer films (SHPFs) composed of renewable biomasses and hygroscopic salt, exhibiting high water uptake of 0.64–0.96 g g
−1
at 15–30% RH. Konjac glucomannan facilitates the highly porous structures with enlarged air-polymer interfaces for active moisture capture and water vapor transport. Thermoresponsive hydroxypropyl cellulose enables phase transition at a low temperature to assist the release of collected water via hydrophobic interactions. With rapid sorption-desorption kinetics, SHPFs operate 14–24 cycles per day in arid environments, equivalent to a water yield of 5.8–13.3 L kg
−1
. Synthesized via a simple casting method using sustainable raw materials, SHPFs highlight the potential for low-cost and scalable atmospheric water harvesting technology to mitigate the global water crisis.
Extracting atmospheric water is a sustainable strategy to enable decentralized access to safely managed water but remains impractical due to its limited daily water output at low relative humidity. Here, the authors demonstrate a hygroscopic polymer composed of renewable biomass which allows high water uptake at low relative humidity |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-30505-2 |