Numerical Investigation of Grooved Shaft Effects on the Rotary Lip Seal Performance with Relative Lip Motion
It is generally agreed that radial lip seals are used in systems with a rotating shaft and a stationary lip. However, according to previous work, it was demonstrated that relative motion between the shaft and the lip has substantial effects on the hydrodynamic lifting load and sealing performances....
Gespeichert in:
Veröffentlicht in: | Lubricants 2019-02, Vol.7 (2), p.16 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is generally agreed that radial lip seals are used in systems with a rotating shaft and a stationary lip. However, according to previous work, it was demonstrated that relative motion between the shaft and the lip has substantial effects on the hydrodynamic lifting load and sealing performances. Nowadays, new generations of textured shafts have emerged in order to reduce friction torque and improve reverse pumping, but no study has confirmed the effect of the relative motion between the rough lip and the shaft grooves on the rotary lip seal performances. In this work, an isothermal hydrodynamic lubrication was performed in transient conditions to investigate the effect of the relative velocity between an oblique grooved shaft and a rough lip. After confirming the validity of the current model with respect to previous works, simulations have underlined the effect of the grooved shaft with relative lip motion on the rotary lip seal performance. Indeed, by keeping the same relative velocity between surfaces, it is shown that moving the shaft with a rate higher than that of the lip surface could produce an important reverse pumping and reduce the friction torque significantly, in comparison with cases where the shaft velocity is weaker. |
---|---|
ISSN: | 2075-4442 2075-4442 |
DOI: | 10.3390/lubricants7020016 |