Empirical models for compressive and tensile strength of basalt fiber reinforced concrete
When molten magma solidifies, basalt fiber (BF) is produced as a byproduct. Due to its remaining pollutants that could affect the environment, it is regarded as a waste product. To determine the compressive strength (CS) and tensile strength (TS) of basalt fiber reinforced concrete (BFRC), this stud...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-11, Vol.13 (1), p.19909-19909, Article 19909 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When molten magma solidifies, basalt fiber (BF) is produced as a byproduct. Due to its remaining pollutants that could affect the environment, it is regarded as a waste product. To determine the compressive strength (CS) and tensile strength (TS) of basalt fiber reinforced concrete (BFRC), this study will develop empirical models using gene expression programming (GEP), Artificial Neural Network (ANN) and Extreme Gradient Boosting (XG Boost). A thorough search of the literature was done to compile a variety of information on the CS and TS of BFRC. 153 CS findings and 127 TS outcomes were included in the review. The water-to-cement, BF, fiber length (FL), and coarse aggregates ratios were the influential characteristics found. The outcomes showed that GEP can accurately forecast the CS and TS of BFRC as compared to ANN and XG Boost. Efficiency of GEP was validated by comparing Regression (R
2
) value of all three models. It was shown that the CS and TS of BFRC increased initially up to a certain limit and then started decreasing as the BF % and FL increased. The ideal BF content for industrial-scale BF reinforcement of concrete was investigated in this study which could be an economical solution for production of BFRC on industrial scale. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-47330-2 |