Establishment and Analysis of Energy Consumption Model of Heavy-Haul Train on Large Long Slope
AC heavy-haul trains produce a huge amount of regenerative braking energy when they run on long downhill sections. If this energy can be used by uphill trains in the same power supply section, a reduction in coal transportation cost and an improvement in power quality would result. To accurately pre...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2018-04, Vol.11 (4), p.965 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AC heavy-haul trains produce a huge amount of regenerative braking energy when they run on long downhill sections. If this energy can be used by uphill trains in the same power supply section, a reduction in coal transportation cost and an improvement in power quality would result. To accurately predict the energy consumption and regenerative braking energy of heavy-haul trains on large long slopes, a single-particle model of train dynamics was used. According to the theory of railway longitudinal section simplification, the energy consumption and the regenerative braking energy model of a single train based on the train attributes, line conditions, and running speed was established. The model was applied and verified on the Shenshuo Railway. The results indicate that the percentage error of the proposed model is generally less than 10%. The model is a convenient and simple research alternative, with strong engineering feasibility. Based on this foundation, a model of train energy consumption was established under different interval lengths by considering the situation of regenerative braking energy in the multi-train operation mode. The model provides a theoretical foundation for future train diagram layout work with the goal of reducing the total train energy consumption. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11040965 |