Eigenvalue results for pseudomonotone perturbations of maximal monotone operators
Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X * are locally uniformly convex. Suppose that T : X ⊃ D ( T ) → 2 X * is a maximal monotone multi-valued operator and C : X ⊃ D ( C ) → X * is a generalized pseudomonotone quasibounded operator with L ⊂ D ( C ), w...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2013, Vol.11 (5), p.851-864 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be an infinite-dimensional real reflexive Banach space such that
X
and its dual
X
* are locally uniformly convex. Suppose that
T
:
X
⊃
D
(
T
) → 2
X
* is a maximal monotone multi-valued operator and
C
:
X
⊃
D
(
C
) →
X
* is a generalized pseudomonotone quasibounded operator with
L
⊂
D
(
C
), where
L
is a dense subspace of
X
. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈
T
x
+
λ
C
x
, with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator
λT
+
C
when
λ
is not an eigenvalue for the pair (
T, C
),
T
being single-valued and densely defined. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 2391-5455 |
DOI: | 10.2478/s11533-013-0211-2 |