Eigenvalue results for pseudomonotone perturbations of maximal monotone operators

Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X * are locally uniformly convex. Suppose that T : X ⊃ D ( T ) → 2 X * is a maximal monotone multi-valued operator and C : X ⊃ D ( C ) → X * is a generalized pseudomonotone quasibounded operator with L ⊂ D ( C ), w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics 2013, Vol.11 (5), p.851-864
Hauptverfasser: Kim, In-Sook, Bae, Jung-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X * are locally uniformly convex. Suppose that T : X ⊃ D ( T ) → 2 X * is a maximal monotone multi-valued operator and C : X ⊃ D ( C ) → X * is a generalized pseudomonotone quasibounded operator with L ⊂ D ( C ), where L is a dense subspace of X . Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x , with a regularization method by means of the duality operator. Moreover, possible branches of eigensolutions to the above inclusion are discussed. Furthermore, we give a surjectivity result about the operator λT + C when λ is not an eigenvalue for the pair ( T, C ), T being single-valued and densely defined.
ISSN:1895-1074
2391-5455
1644-3616
2391-5455
DOI:10.2478/s11533-013-0211-2