Geostatistical Distribution and Contamination Status of Heavy Metals in the Sediment of Perak River, Malaysia

Heavy metal pollution is one of the major environmental issues in recent decades owing to the rapid increase in urbanisation and industrialisation. Sediments usually act as sinks for heavy metals due to their complex physical and chemical adsorption mechanisms. In this study, heavy metals like lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology 2019-06, Vol.6 (2), p.30
Hauptverfasser: Salam, Mohammed Abdus, Paul, Shujit Chandra, Shaari, Farrah Izzaty, Rak, Aweng Eh, Ahmad, Rozita Binti, Kadir, Wan Rashidah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy metal pollution is one of the major environmental issues in recent decades owing to the rapid increase in urbanisation and industrialisation. Sediments usually act as sinks for heavy metals due to their complex physical and chemical adsorption mechanisms. In this study, heavy metals like lead (Pb), Zinc (Zn), Cadmium (Cd), Copper (Cu) and Iron (Fe) in the surface sediment from 15 location (upstream and downstream) on the Perak River, Malaysia were investigated by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). The geostatistical prediction map showed the range of Pb, Zn, Cd, Cu and Fe concentration in upstream area was 14.56–27.0 µg/g, 20–51.27 µg/g, 1.51–3.0 µg/g, 6.6–19.12 µg/g and 20.24–56.58%, respectively, and in downstream areas was 27.6–60.76 µg/g, 49.04–160.5 µg/g, 2.77–4.02 µg/g, 9.82–59.99 µg/g and 31.34–39.5%, respectively. Based on the enrichment factor and geoaccumulation index, Cd was found to be the most dominant pollutant in the study area. Pollution load index, sediment quality guidelines and sediment environmental toxicity quotient data showed that the downstream sediment was more polluted than the upstream sediment in the Perak River. The multivariate analysis showed that Pb, Zn and Cu mainly originated from natural sources with minor contribution from human activities, whereas Fe and Cd originated from various industrial and agricultural activities along the studied area.
ISSN:2306-5338
2306-5338
DOI:10.3390/hydrology6020030