Torsional vibration suppression of cantilever beams system with the PNESI

Considering the intricate design of the conventional inerter structures, the compressive-torsional coupling effects of chiral metamaterial are used to achieve the torsional movement alongside linear movement, forming a simplified inerter mechanism. This simplified design is then integrated with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low frequency noise, vibration, and active control vibration, and active control, 2024-12, Vol.43 (4), p.1713-1731
Hauptverfasser: Li, Hui, Yao, Hongliang, Dou, Jinxin, Jia, Ruyu, Wei, Guochong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering the intricate design of the conventional inerter structures, the compressive-torsional coupling effects of chiral metamaterial are used to achieve the torsional movement alongside linear movement, forming a simplified inerter mechanism. This simplified design is then integrated with the nonlinear energy sink (NES). In this study, a novel NES with the chiral metamaterial inerter structure is suggested to mitigate vibrations in the cantilever beam system. The introduction includes both the piecewise linear beam, providing nonlinear stiffness, and the chiral metamaterial inerter structure. These components are combined to form the piecewise nonlinear NES with inerter (PNESI) structure. Subsequently, the PNESI structure is integrated with the cantilever beam system, and a corresponding dynamic model is formulated to evaluate its vibration mitigation capabilities. The theoretical results are verified through experiments. The findings indicate that under steady-state vibration conditions, PNESI achieves peak vibration reductions of 88.6% in simulations and 62.7% in experiments for the cantilever beam system.
ISSN:1461-3484
2048-4046
DOI:10.1177/14613484241272264