Holistic analysis of a gliding arc discharge using 3D tomography and single-shot fluorescence lifetime imaging

Gliding arc plasmas, a versatile form of non-thermal plasma discharges, hold great promise for sustainable chemical conversion in electrified industrial applications. Their relatively high temperatures compared to other non-thermal plasmas, reactive species generation, and efficient energy transfer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications engineering 2024-07, Vol.3 (1), p.103-10, Article 103
Hauptverfasser: Nilsson, Sebastian, Sanned, David, Roth, Adrian, Sun, Jinguo, Berrocal, Edouard, Richter, Mattias, Ehn, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gliding arc plasmas, a versatile form of non-thermal plasma discharges, hold great promise for sustainable chemical conversion in electrified industrial applications. Their relatively high temperatures compared to other non-thermal plasmas, reactive species generation, and efficient energy transfer make them ideal for an energy-efficient society. However, plasma discharges are transient and complex 3D entities influenced by gas pressure, mixture, and power, posing challenges for in-situ measurements of chemical species and spatial dynamics. Here we demonstrate a combination of innovative approaches, providing a comprehensive view of discharges and their chemical surroundings by combining fluorescence lifetime imaging of hydroxyl (OH) radicals with optical emission 3D tomography. This reveals variations in OH radical distributions under different conditions and local variations in fluorescence quantum yield with high spatial resolution from a single laser shot. Our results and methodology offer a multidimensional platform for interdisciplinary research in plasma physics and chemistry. Sebastian Nilsson and colleagues capture the 3D structure of a gliding arc plasma and simultaneously apply a single shot fluorescence lifetime imaging from which the physical properties linked to the chemistry and molecular collision dynamics can be extracted.
ISSN:2731-3395
2731-3395
DOI:10.1038/s44172-024-00250-z