Enhancing CAR-T cell functionality in a patient-specific manner

Patient responses to autologous CD19 chimeric antigen receptor (CAR) T-cell therapies are limited by insufficient and inconsistent cellular functionality. Here, we show that controlling the precise level of stimulation during T-cell activation to accommodate individual differences in the donor cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-01, Vol.14 (1), p.506-506, Article 506
Hauptverfasser: Zhang, David K. Y., Adu-Berchie, Kwasi, Iyer, Siddharth, Liu, Yutong, Cieri, Nicoletta, Brockman, Joshua M., Neuberg, Donna, Wu, Catherine J., Mooney, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Patient responses to autologous CD19 chimeric antigen receptor (CAR) T-cell therapies are limited by insufficient and inconsistent cellular functionality. Here, we show that controlling the precise level of stimulation during T-cell activation to accommodate individual differences in the donor cells will dictate the functional attributes of CAR-T cell products. The functionality of CAR-T cell products, consisting of a diverse set of blood samples derived from healthy donors, acute lymphoblastic leukemia (ALL), and chronic lymphocytic lymphoma (CLL) patient samples, representing a range of patient health status, is tested upon culturing on artificial antigen-presenting cell scaffolds to deliver T-cell stimulatory ligands (anti-CD3/anti-CD28) at highly defined densities. A clear relationship is observed between the dose of stimulation, the phenotype of the T-cell blood sample prior to T-cell activation, and the functionality of the resulting CAR-T cell products. We present a model, based on this dataset, that predicts the precise stimulation needed to manufacture a desired CAR-T cell product, given the input T-cell attributes in the initial blood sample. These findings demonstrate a simple approach to enhance CAR-T functionality by personalizing the level of stimulation during T-cell activation to enable flexible manufacturing of more consistent and potent CAR-T cells. ‘Manufacturing CAR-T cells is a streamlined and highly regulated procedure involving T-cell-expansion and activation on a standardised platform. Here, the authors show that a personalized approach, taking the phenotypic attributes of individual patients’ T cells into account, leads to more efficient CAR-T cell manufacturing and better CAR-T cell functionality.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-36126-7