Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach
Determination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on p...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-12, Vol.10 (1), p.21790-21790, Article 21790 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Determination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on powder X-ray diffraction (XRD) patterns as a proof of concept using simulated patterns. Our tree-ensemble-based ML model works with nearly or over 90% accuracy for crystal system classification, except for triclinic cases, and with 88% accuracy for space group classification with five candidates. We also succeeded in quantifying empirical knowledge vaguely shared among experts, showing the possibility for data-driven discovery of unrecognised characteristics embedded in experimental data by using an interpretable ML approach. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-77474-4 |