Experimental study of using microwave reflex-radar level gauges for liquid metal coolants
The article presents the results of work aimed at solving the problem of measuring the coolant level in miscellaneous tanks of liquid-metal-cooled reactor plants, mainly of an integral layout with a free level of the primary coolant. The choice of relevant measuring means and methods is limited by t...
Gespeichert in:
Veröffentlicht in: | Nuclear Energy and Technology 2022-09, Vol.8 (3), p.219-223 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The article presents the results of work aimed at solving the problem of measuring the coolant level in miscellaneous tanks of liquid-metal-cooled reactor plants, mainly of an integral layout with a free level of the primary coolant. The choice of relevant measuring means and methods is limited by the extreme parameters of the liquid metal coolant (LMC) and operating conditions. Traditional measuring means are practically unsuitable; therefore, measuring the HLMC level is a complex technical task. Based on this review, they propose and describe a method of pulsed microwave reflectometry as the most promising in terms of combining the characteristics of reliability, accuracy and ease of use. The results of the experimental study demonstrated the efficiency of the level gauge, which worked according to this method, for measuring the level of lead-bismuth coolant in the control tank under conditions close to natural ones. An analysis of the results confirmed the possibility of using this method to control the level of melts of various metals as applied to HLMC reactor plants.
Using the device for measuring the level, which works according to the proposed method, it is possible to control the level of melt of various metals in tanks in real time without the need to move various parts of the sensitive element of the level gauge while maintaining the tightness of the circuit. This device is applicable for various nuclear power plants, accelerator-controlled systems, research reactors and experimental facilities with liquid metal coolants. |
---|---|
ISSN: | 2452-3038 2452-3038 |
DOI: | 10.3897/nucet.8.94540 |