Smart facemask for wireless CO2 monitoring

The use of facemasks by the general population is recommended worldwide to prevent the spread of SARS-CoV-2. Despite the evidence in favour of facemasks to reduce community transmission, there is also agreement on the potential adverse effects of their prolonged usage, mainly caused by CO 2 rebreath...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-01, Vol.13 (1), p.72-12, Article 72
Hauptverfasser: Escobedo, P., Fernández-Ramos, M. D., López-Ruiz, N., Moyano-Rodríguez, O., Martínez-Olmos, A., Pérez de Vargas-Sansalvador, I. M., Carvajal, M. A., Capitán-Vallvey, L. F., Palma, A. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of facemasks by the general population is recommended worldwide to prevent the spread of SARS-CoV-2. Despite the evidence in favour of facemasks to reduce community transmission, there is also agreement on the potential adverse effects of their prolonged usage, mainly caused by CO 2 rebreathing. Herein we report the development of a sensing platform for gaseous CO 2 real-time determination inside FFP2 facemasks. The system consists of an opto-chemical sensor combined with a flexible, battery-less, near-field-enabled tag with resolution and limit of detection of 103 and 140 ppm respectively, and sensor lifetime of 8 h, which is comparable with recommended FFP2 facemask usage times. We include a custom smartphone application for wireless powering, data processing, alert management, results displaying and sharing. Through performance tests during daily activity and exercise monitoring, we demonstrate its utility for non-invasive, wearable health assessment and its potential applicability for preclinical research and diagnostics. While facemasks are recommended to prevent the spread of SARS-CoV-2, potential adverse effects may occur upon prolonged usage. Here the authors develop and evaluate an opto-chemical sensor incorporated into a smart FFP2-type facemask for wireless, real-time CO2 monitoring.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27733-3