Chemical Properties and Bacterial Community Reaction to Acidified Cattle Slurry Fertilization in Soil from Maize Cultivation
Acidified slurry is a novel organic fertilizer that limits gaseous ammonia emissions and reduces nitrogen losses. Our research aimed to determine the effects of short-term fertilization with acidified slurry on the chemical properties and bacterial community of soil used for maize cultivation. In th...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2021-03, Vol.11 (3), p.601 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acidified slurry is a novel organic fertilizer that limits gaseous ammonia emissions and reduces nitrogen losses. Our research aimed to determine the effects of short-term fertilization with acidified slurry on the chemical properties and bacterial community of soil used for maize cultivation. In the months after spreading, raw slurry fertilization had a significant impact on the increase in values of N-NO3. In contrast, soil fertilized with acidified slurry had lower N-NO3 values when compared to raw slurry fertilization treatments. Bacterial sequencing using Illumina MiSeq showed no differences in the genetic diversity of bacterial communities. In all tested soil samples, dominants at the phylum level were Actinobacteria, Proteobacteria, and Acidobacteria, while dominants at the class level were Actinobacteria, Alphaproteobacteria, Thermoleophilia, Gammaproteobacteria, and Acidimicrobiia. The values of biodiversity indices (Shannon index, Simpson index) in tested samples were similar. Our results suggest that short-term fertilization with acidified slurry does not adversely affect the biodiversity and structure of the bacterial communities and has a slight impact on soil chemical properties. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy11030601 |