Energy and Economic Efficiency of Gas Turbine Units and Heat Pumps in Power-supply Systems in the Arctic Regions of Russia
Currently, in publications, there is some controversy about the efficiency of various power-supply systems operating in extreme climatic conditions. The need to dispel this controversy explains this study's relevance. The purpose of this study is to evaluate the feasibility of the use of cogene...
Gespeichert in:
Veröffentlicht in: | Problems of the regional energetics 2017-04, Vol.33 (1), p.66-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Currently, in publications, there is some controversy about the efficiency of various power-supply systems operating in extreme climatic conditions. The need to dispel this controversy explains this study's relevance. The purpose of this study is to evaluate the feasibility of the use of cogeneration gas turbine and microturbine units as the heat-and-power source for a camp-like residential facility in the Arctic regions of Russia. A boiler plant and a heat pump system are analyzed as heat sources for the afore-mentioned camp. The authors used their own mathematical models of the units to do the study. The estimates were based on the annual facility-specific power and heat consumption data, additionally climatic conditions and fuel kind (natural gas) were taken into consideration. The study resulted in defining the plants' limits of equal fuel consumption, depending on the substituted power output efficiency and the power/heat production cost to the price of gas correlation. Another result was the evaluation of the power efficiency (by the natural gas consumption) and economic feasibility, as well as the payback term. We concluded that in case the natural gas was the only fuel available the ground source vapor-compressing heat pump systems were power-wise and economically unsound, provided they were operated under environmental conditions typical for the Russian North and according to the region-specific heat-supply schedule. The outcome of this study can be used when planning/designing the power-supply facilities in extreme climatic conditions, as well as in evaluating/estimating the power-supply systems' efficiency. |
---|---|
ISSN: | 1857-0070 |