Graphene-Assisted Thermal Interface Materials with a Satisfied Interface Contact Level Between the Matrix and Fillers
Reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) are adopted to improve the performance of thermal interface materials (TIMs). Therein, the 3DGNs provide a fast transport network for phonons, while the RGO plays as a bridge to enhance the phonon transport ability at the i...
Gespeichert in:
Veröffentlicht in: | Nanoscale research letters 2018-09, Vol.13 (1), p.276-8, Article 276 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) are adopted to improve the performance of thermal interface materials (TIMs). Therein, the 3DGNs provide a fast transport network for phonons, while the RGO plays as a bridge to enhance the phonon transport ability at the interface between the filler and matrix. The types of surface functional groups of the RGO are found to exert a remarkable influence on the resulting thermal performance; the carboxyl groups are found in the optimal selection to promote the transport process at the interface area because a strong chemical bond will form between the graphene basal plane and epoxy resin (ER) through this kind of group. The resulting thermal conductivity reaches 6.7 Wm
−1
K
−1
after optimizing the mass fraction and morphology of the filler, which is 3250% higher than that of the pristine ER. Moreover, the mechanical properties of these as-prepared TIMs are also detected, and the specimens by using the RGO(OOH) filler display the better performances. |
---|---|
ISSN: | 1931-7573 1556-276X |
DOI: | 10.1186/s11671-018-2704-1 |