Graphene-Assisted Thermal Interface Materials with a Satisfied Interface Contact Level Between the Matrix and Fillers

Reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) are adopted to improve the performance of thermal interface materials (TIMs). Therein, the 3DGNs provide a fast transport network for phonons, while the RGO plays as a bridge to enhance the phonon transport ability at the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale research letters 2018-09, Vol.13 (1), p.276-8, Article 276
Hauptverfasser: Tang, Bo, Li, Xufei, Huang, Weiqiu, Yu, Haogang, Ling, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) are adopted to improve the performance of thermal interface materials (TIMs). Therein, the 3DGNs provide a fast transport network for phonons, while the RGO plays as a bridge to enhance the phonon transport ability at the interface between the filler and matrix. The types of surface functional groups of the RGO are found to exert a remarkable influence on the resulting thermal performance; the carboxyl groups are found in the optimal selection to promote the transport process at the interface area because a strong chemical bond will form between the graphene basal plane and epoxy resin (ER) through this kind of group. The resulting thermal conductivity reaches 6.7 Wm −1  K −1 after optimizing the mass fraction and morphology of the filler, which is 3250% higher than that of the pristine ER. Moreover, the mechanical properties of these as-prepared TIMs are also detected, and the specimens by using the RGO(OOH) filler display the better performances.
ISSN:1931-7573
1556-276X
DOI:10.1186/s11671-018-2704-1