Magnetic susceptibility and heavy metal contents in sediments of Riam Kiwa, Riam Kanan and Martapura rivers, Kalimantan Selatan province, Indonesia

Kalimantan Selatan is proud of the Martapura River's natural and cultural history. Martapura tributaries include Riam Kanan and Kiwa. The Martapura River is essential because it provides clean water and a livelihood for riverside residents. Human-caused river pollution grows with population den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2023-06, Vol.9 (6), p.e16425-e16425, Article e16425
Hauptverfasser: Sudarningsih, Sudarningsih, Pratama, Aditya, Bijaksana, Satria, Fahruddin, Fahruddin, Zanuddin, Andi, Salim, Abdus, Abdillah, Habib, Rusnadi, Muhammad, Mariyanto, Mariyanto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kalimantan Selatan is proud of the Martapura River's natural and cultural history. Martapura tributaries include Riam Kanan and Kiwa. The Martapura River is essential because it provides clean water and a livelihood for riverside residents. Human-caused river pollution grows with population density (also known as anthropogenic pollutants). This study characterizes surface sediment magnetic characteristics and heavy metal contents along the Riam Kanan, Riam Kiwa, and Martapura rivers. The purpose of this research is to evaluate the magnetic signal with respect to heavy metal contents found in surface sediments taken from rivers and to confirm the use of the rock magnetism method in environmental studies in the study area. Surface sediment samples were gathered and tested for magnetic, heavy metal, and mineralogical content. According to the findings, the pseudo-single domain (PSD) magnetite mineral predominates among the magnetic minerals that can be found in the surface sediments of the rivers Riam Kanan, Riam Kiwa, and Martapura. This substantially greater grain size may be due to magnetic particles produced by erosion along the river banks. The mass-specific magnetic susceptibility of surface sediments ranges from 103.11 to 1403.64 × 10−8 m3/kg, with an average value of 355.67 × 10−8 m3/kg due to the peatland environment. Magnetic susceptibility strongly negatively correlates with heavy contents like Cu, Zn, and Hg, according to Pearson correlation analysis. Due to this correlation, magnetic susceptibility may indicate heavy metal pollution in certain rivers. This current study demonstrates the novelty of the relationship between magnetic susceptibility and the contents of heavy metals in surface sediments from rivers in peatland and tropical environments by illustrating how the relationship affects the magnetic susceptibility of the sediments.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e16425