Single-Image Super Resolution of Remote Sensing Images with Real-World Degradation Modeling
Limited resolution is one of the most important factors hindering the application of remote sensing images (RSIs). Single-image super resolution (SISR) is a technique to improve the spatial resolution of digital images and has attracted the attention of many researchers. In recent years, with the ad...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-06, Vol.14 (12), p.2895 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Limited resolution is one of the most important factors hindering the application of remote sensing images (RSIs). Single-image super resolution (SISR) is a technique to improve the spatial resolution of digital images and has attracted the attention of many researchers. In recent years, with the advancement of deep learning (DL) frameworks, many DL-based SISR models have been proposed and achieved state-of-the-art performance; however, most SISR models for RSIs use the bicubic downsampler to construct low-resolution (LR) and high-resolution (HR) training pairs. Considering that the quality of the actual RSIs depends on a variety of factors, such as illumination, atmosphere, imaging sensor responses, and signal processing, training on “ideal” datasets results in a dramatic drop in model performance on real RSIs. To address this issue, we propose to build a more realistic training dataset by modeling the degradation with blur kernels and imaging noises. We also design a novel residual balanced attention network (RBAN) as a generator to estimate super-resolution results from the LR inputs. To encourage RBAN to generate more realistic textures, we apply a UNet-shape discriminator for adversarial training. Both referenced evaluations on synthetic data and non-referenced evaluations on actual images were carried out. Experimental results validate the effectiveness of the proposed framework, and our model exhibits state-of-the-art performance in quantitative evaluation and visual quality. We believe that the proposed framework can facilitate super-resolution techniques from research to practical applications in RSIs processing. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14122895 |