QUALITATIVE SCREENING METHOD FOR IMPACT ASSESSMENT OF UNCERTAIN BUILDING GEOMETRY ON THERMAL ENERGY DEMAND PREDICTIONS

Virtual 3D models of cities are now being extensively employed for the estimation of thermal energy demand at varying spatial and temporal scales. Efforts in preparing and management of the datasets required for the simulations have reached an advanced stage. Thus allowing to perform city scale simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2016-10, Vol.XLII-2/W2, p.127-134
Hauptverfasser: Wate, P., Coors, V., Robinson, D., Iglesias, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Virtual 3D models of cities are now being extensively employed for the estimation of thermal energy demand at varying spatial and temporal scales. Efforts in preparing and management of the datasets required for the simulations have reached an advanced stage. Thus allowing to perform city scale simulations using simplified thermal energy balance models. However, the uncertainty inherent in datasets and the reliability of their data sources are often not given due consideration. Such consideration to the uncertainty problem would need a paradigm shift in simulation practices from a single value assignment to uncertainty characterization followed by assessment of qualitative and quantitative impact on the simulation results. The proposed study establishes a mechanism to handle the uncertainty arising from the building geometry reconstruction process and its possible consequences on the thermal energy demand calculations.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-2-W2-127-2016