Ultracompact meta-imagers for arbitrary all-optical convolution
Electronic digital convolutions could extract key features of objects for data processing and information identification in artificial intelligence, but they are time-cost and energy consumption due to the low response of electrons. Although massless photons enable high-speed and low-loss analog con...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2022-03, Vol.11 (1), p.62-62, Article 62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic digital convolutions could extract key features of objects for data processing and information identification in artificial intelligence, but they are time-cost and energy consumption due to the low response of electrons. Although massless photons enable high-speed and low-loss analog convolutions, two existing all-optical approaches including Fourier filtering and Green’s function have either limited functionality or bulky volume, thus restricting their applications in smart systems. Here, we report all-optical convolutional computing with a metasurface-singlet or -doublet imager, considered as the third approach, where its point spread function is modified arbitrarily via a complex-amplitude meta-modulator that enables functionality-unlimited kernels. Beyond one- and two-dimensional spatial differentiation, we demonstrate real-time, parallel, and analog convolutional processing of optical and biological specimens with challenging pepper-salt denoising and edge enhancement, which significantly enrich the toolkit of all-optical computing. Such meta-imager approach bridges multi-functionality and high-integration in all-optical convolutions, meanwhile possessing good architecture compatibility with digital convolutional neural networks.
An ultra-compact metasurface-based imager with modified point spread function is demonstrated to realize arbitrary all-optical parallel picture convolution that is highly compatible to convolutional neural network. |
---|---|
ISSN: | 2047-7538 2095-5545 2047-7538 |
DOI: | 10.1038/s41377-022-00752-5 |