Silica Coating of Metal-Loaded H-ZSM-22 to Form the Core-Shell Nanostructures: Characterization, Textural Properties, and Catalytic Potency in the Esterification of Oleic Acid

In this study, ZSM-22 was synthesized using N,N-diethylaniline as a template through a hydrothermal method. The proton and various metals such as zirconium, strontium, and iron were immobilized on the surface of obtained zeolites through the ion exchange method. The catalysts were studied by Fourier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Chemical Engineering 2021, Vol.2021, p.1-16
Hauptverfasser: Haghighi, Maryam, Fereidooni, Mehranoosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, ZSM-22 was synthesized using N,N-diethylaniline as a template through a hydrothermal method. The proton and various metals such as zirconium, strontium, and iron were immobilized on the surface of obtained zeolites through the ion exchange method. The catalysts were studied by Fourier-Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption isotherms, Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) elemental analysis, and Temperature-Programmed Desorption of ammonia (TPD-NH3) technique for determining the number of acid sites. In the esterification reaction of oleic acid, the operating conditions such as catalyst dosage, temperature, molar ratio of methanol to oil, and reaction time were optimized and adjusted at 11 wt%, 70°C, 10 : 1, and 48 h subsequently. The maximum yield% of 48.07% was achieved in the presence of Zr-H-ZSM-22 at optimum conditions. In order to improve the efficiency of three zeolites Zr-H-ZSM-22, Fe-H-ZSM-22, and Sr-H-ZSM-22, the core-shell structures with SiO2 coating were prepared. Zr-H-ZSM-22@SiO2 was less active than Zr-H-ZSM-22 due to the SiO2 coverage of Lewis active sites.
ISSN:1687-806X
1687-8078
DOI:10.1155/2021/5321383