Synthesis and biological evaluation of new pyridone-annelated isoindigos as anti-proliferative agents
A selected set of substituted pyridone-annelated isoindigos 3a-f has been synthesized via interaction of 5- and 6-substituted oxindoles 2a-f with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5'-chloro and 5'-bromo d...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2014-08, Vol.19 (9), p.13076-13092 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A selected set of substituted pyridone-annelated isoindigos 3a-f has been synthesized via interaction of 5- and 6-substituted oxindoles 2a-f with 6-ethyl-1,2,9-trioxopyrrolo[3,2-f]quinoline-8-carboxylic acid (1) in acetic acid at reflux. Among these isoindigos, the 5'-chloro and 5'-bromo derivatives 3b and 3d show strong and selective antiproliferative activities against a panel of human hematological and solid tumor cell-lines, but not against noncancerous cells, suggesting their potential use as anticancer agents. In all the tested cell lines, compound 3b was a 25%-50% more potent inhibitor of cell growth than 3d, suggesting the critical role of the substitution at 5'-position of the benzo-ring E. The IC50 values after 48 hours incubation with the 5'-chloro compound 3b were 6.60 µM in K562, 8.21 µM in THP-1, 8.97 µM in HepG2, 11.94 µM in MCF-7 and 14.59 µM in Caco-2 cancer cells, while the IC50 values in noncancerous HEK-293 and L-929 were 30.65 µM and 40.40 µM, respectively. In addition, compound 3b induced higher levels apoptosis in K562 cells than 3d, as determined by annexin V/7-AAD flowcytometry analysis. Therefore, further characterization of the antitproliferative mechanisms of compounds 3b and 3d may provide a novel chemotherapeutic agents. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules190913076 |