A simplified seasonal forecasting strategy, applied to wind and solar power in Europe

[Display omitted] •The skill in seasonal forecasts of wind and irradiance in Europe is patchy.•A linear regression method can produce calibrated probabilistic seasonal forecasts.•Seasonal + regional average wind/solar power is highly-correlated with wind/irradiance.•So, detailed transformations (pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate services 2022-08, Vol.27, p.100318-100318, Article 100318
Hauptverfasser: Bett, Philip E., Thornton, Hazel E., Troccoli, Alberto, De Felice, Matteo, Suckling, Emma, Dubus, Laurent, Saint-Drenan, Yves-Marie, Brayshaw, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •The skill in seasonal forecasts of wind and irradiance in Europe is patchy.•A linear regression method can produce calibrated probabilistic seasonal forecasts.•Seasonal + regional average wind/solar power is highly-correlated with wind/irradiance.•So, detailed transformations (power curves etc.) are not necessary at these scales.•Together these results simplify the production of seasonal climate services. We demonstrate levels of skill for forecasts of seasonal-mean wind speed and solar irradiance in Europe, using seasonal forecast systems available from the Copernicus Climate Change Service (C3S). While skill is patchy, there is potential for the development of climate services for the energy sector. Following previous studies, we show that, where there is skill, a simple linear regression-based method using the hindcast and forecast ensemble means provides a straightforward approach for producing calibrated probabilistic seasonal forecasts. This method extends naturally to using a larger-scale feature of the climate, such as the North Atlantic Oscillation, as the climate model predictor, and we show that this provides opportunities to improve the skill in some cases. We further demonstrate that, on seasonal-average and regional (e.g. national) average scales, wind and solar power generation are highly correlated with single climate variables (wind speed and irradiance). The detailed non-linear transformations from meteorological quantities to energy quantities, which are essential for detailed simulation of power system operations, are usually not necessary when forecasting gross wind or solar generation potential at seasonal-mean regional-mean scales. Together, our results demonstrate that where there is skill in seasonal forecasts of wind speed and irradiance, or a correlated larger-scale climate predictor, skilful forecasts of seasonal mean wind and solar power generation can be made based on the climate variable alone, without requiring complex transformations. This greatly simplifies the process of developing a useful seasonal climate service.
ISSN:2405-8807
2405-8807
DOI:10.1016/j.cliser.2022.100318