MAUDE: inferring expression changes in sorting-based CRISPR screens

Improved methods are needed to model CRISPR screen data for interrogation of genetic elements that alter reporter gene expression readout. We create MAUDE (Mean Alterations Using Discrete Expression) for quantifying the impact of guide RNAs on a target gene's expression in a pooled, sorting-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2020-06, Vol.21 (1), p.134-134, Article 134
Hauptverfasser: de Boer, Carl G, Ray, John P, Hacohen, Nir, Regev, Aviv
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improved methods are needed to model CRISPR screen data for interrogation of genetic elements that alter reporter gene expression readout. We create MAUDE (Mean Alterations Using Discrete Expression) for quantifying the impact of guide RNAs on a target gene's expression in a pooled, sorting-based expression screen. MAUDE quantifies guide-level effects by modeling the distribution of cells across sorting expression bins. It then combines guides to estimate the statistical significance and effect size of targeted genetic elements. We demonstrate that MAUDE outperforms previous approaches and provide experimental design guidelines to best leverage MAUDE, which is available on https://github.com/Carldeboer/MAUDE.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-020-02046-8