Nano-molar deltamethrin sensor based on electrical impedance of PAH/PAZO layer-by-layer sensing films

This work reports a novel deltamethrin (DM) sensor able to detect nano-molar concentrations in ethanol solutions. The sensing layer consists of a thin film, obtained via a layer-by-layer technique, from alternate adsorption of poly(allylamine chloride) (PAH) and poly[1-[4-(3-carboxy-4-hydroxyphenyla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2013-08, Vol.13 (8), p.10167-10176
Hauptverfasser: Abegão, Luís Miguel Gomes, Ribeiro, Jorge Humberto Fernandes, Ribeiro, Paulo António, Raposo, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work reports a novel deltamethrin (DM) sensor able to detect nano-molar concentrations in ethanol solutions. The sensing layer consists of a thin film, obtained via a layer-by-layer technique, from alternate adsorption of poly(allylamine chloride) (PAH) and poly[1-[4-(3-carboxy-4-hydroxyphenylazo)-benzenesulfonamide)-1,2-ethanediyl]sodium salt] (PAZO) onto a solid support with interdigitaded gold electrodes. The sensor response, obtained from impedance spectroscopy measurements, was revealed to be linear with respect to the real part of impedance, taken at 100 Hz, when plotted as a function of the logarithm of deltamethrin molar concentrations in the micro- to nano-molar range. Sensor sensitivity was of 41.1 ± 0.7 kΩ per decade of concentration for an immersion time above 2 min and the reproducibility is approximately 2% in a binary solution of ethanol and deltamethrin. The main insight of this work concerns to DM detection limits as the sensor revealed to be able to detect concentrations below 0.1 nM, a value which is significantly lower than any reported in the literature and close what is appropriate for in situ environmental contaminant detection.
ISSN:1424-8220
1424-8220
DOI:10.3390/s130810167