Control ofa ThermoelectricCooling Module by Metaheuristic Optimization Algorithms

In this study, the proportional-integral-derivative (PID) controller of a sample thermoelectric cooler(TEC)system model is optimized using four different metaheuristic optimization algorithms. For this aim, the classical PID and the metaheuristic optimization algorithms as Coronavirus Herd Immunity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Havacılık ve uzay teknolojileri dergisi (Online) 2024-01, Vol.17 (1), p.89-106
Hauptverfasser: Tufan KOÇ, Nevra BAYHAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the proportional-integral-derivative (PID) controller of a sample thermoelectric cooler(TEC)system model is optimized using four different metaheuristic optimization algorithms. For this aim, the classical PID and the metaheuristic optimization algorithms as Coronavirus Herd Immunity Optimization (CHIO), Atomic Search Optimization (ASO), Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO)were used for control of a TEC system. The settling time and maximum overshoot criteria are used to compare performances of the optimized controllers. -20°C is the desired temperature for the cold side of this thermoelectric module. Since TEC systems requirequick cooling, CHIO-PID performs the best because it is the first to reach the set temperature of -20 ̊C in 42 seconds at the 1% band limit.
ISSN:1304-0448
2148-1059