Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity

In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , where ( − Δ ) A s is the fractional magnetic operator with 0 < s < 1 , N &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2020-06, Vol.2020 (1), p.1-10, Article 112
Hauptverfasser: Li, Quanqing, Teng, Kaimin, Wang, Wenbo, Zhang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , where ( − Δ ) A s is the fractional magnetic operator with 0 < s < 1 , N > 2 s , λ > 0 , 2 s ∗ = 2 N N − 2 s , p ≥ 2 s ∗ , f is a subcritical nonlinearity, and V ∈ C ( R N , R ) and A ∈ C ( R N , R N ) are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small λ > 0 . Our main contribution is related to the fact that we are able to deal with the case p > 2 s ∗ .
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-020-01409-1