Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity: ( − Δ ) A s u + V ( x ) u = f ( x , | u | 2 ) u + λ | u | p − 2 u , x ∈ R N , where ( − Δ ) A s is the fractional magnetic operator with 0 < s < 1 , N &...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2020-06, Vol.2020 (1), p.1-10, Article 112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following fractional Schrödinger equation with electromagnetic fields and critical or supercritical nonlinearity:
(
−
Δ
)
A
s
u
+
V
(
x
)
u
=
f
(
x
,
|
u
|
2
)
u
+
λ
|
u
|
p
−
2
u
,
x
∈
R
N
,
where
(
−
Δ
)
A
s
is the fractional magnetic operator with
0
<
s
<
1
,
N
>
2
s
,
λ
>
0
,
2
s
∗
=
2
N
N
−
2
s
,
p
≥
2
s
∗
,
f
is a subcritical nonlinearity, and
V
∈
C
(
R
N
,
R
)
and
A
∈
C
(
R
N
,
R
N
)
are the electric and magnetic potentials, respectively. Under some suitable conditions, by variational methods we prove that the equation has a nontrivial solution for small
λ
>
0
. Our main contribution is related to the fact that we are able to deal with the case
p
>
2
s
∗
. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-020-01409-1 |