Research on the Application of Multi-Source Data Analysis for Bridge Safety Monitoring in the Reconstruction and Demolition Process

With the increase of bridge-required demolition/dismantling for reconstruction or modification, the early warning of construction emergencies is greatly needed for monitoring the structural safety of bridges under construction. In this paper, based on the multi-source data of nearby construction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Buildings (Basel) 2022-08, Vol.12 (8), p.1195
Hauptverfasser: Fu, Meizhen, Liang, Yuxiong, Feng, Qingsong, Wu, Bitao, Tang, Guoxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increase of bridge-required demolition/dismantling for reconstruction or modification, the early warning of construction emergencies is greatly needed for monitoring the structural safety of bridges under construction. In this paper, based on the multi-source data of nearby construction and demolition construction of a large-span RC arch bridge in China, the Analytic Hierarchy Process (AHP) method is adopted to analyze the multi-source data and set the early warning threshold for bridge safety in construction. According to the analytical results, a reasonable evaluation of AHP factors can improve the accuracy and timeliness of safety early warning in the structural safety monitoring of bridges during the construction process. The weight of the monitoring data in AHP should be assigned according to its reliability, stability, and importance. Bridge safety assessment of nearby construction having harmful vibration should prioritize dynamic bridge monitoring by cooperating with multi-source data, including stress, and deformation monitoring of the bridge is necessary. The assessment results proved that multi-source data, including but not limited to structural stress and deformation monitoring data, vibration data, theoretical prediction data, environment data such as temperature data, and construction/maintenance history data, are necessary for safety monitoring and early warning of construction with specifications related to bridge construction. The early warnings triggered by the evaluation results successfully ensure the safety status of the bridge during nearby construction and demolition construction, which shows the proposed method can provide a guideline for comprehensively evaluating and early warning of the status of bridge construction.
ISSN:2075-5309
2075-5309
DOI:10.3390/buildings12081195