Bird populations most exposed to climate change are less sensitive to climatic variation

The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date info...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-04, Vol.13 (1), p.2112-2112, Article 2112
Hauptverfasser: Bailey, Liam D., van de Pol, Martijn, Adriaensen, Frank, Arct, Aneta, Barba, Emilio, Bellamy, Paul E., Bonamour, Suzanne, Bouvier, Jean-Charles, Burgess, Malcolm D., Charmantier, Anne, Cusimano, Camillo, Doligez, Blandine, Drobniak, Szymon M., Dubiec, Anna, Eens, Marcel, Eeva, Tapio, Ferns, Peter N., Goodenough, Anne E., Hartley, Ian R., Hinsley, Shelley A., Ivankina, Elena, Juškaitis, Rimvydas, Kempenaers, Bart, Kerimov, Anvar B., Lavigne, Claire, Leivits, Agu, Mainwaring, Mark C., Matthysen, Erik, Nilsson, Jan-Åke, Orell, Markku, Rytkönen, Seppo, Senar, Juan Carlos, Sheldon, Ben C., Sorace, Alberto, Stenning, Martyn J., Török, János, van Oers, Kees, Vatka, Emma, Vriend, Stefan J. G., Visser, Marcel E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two co-familial European songbirds, the great tit ( Parus major ) and blue tit ( Cyanistes caeruleus ), covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity than those in evergreen and mixed habitats. However, populations with higher sensitivity tended to have experienced less rapid change in climate over the past decades, such that populations with high phenological sensitivity will not necessarily exhibit the strongest phenological advancement. Our results show that to effectively assess the impact of climate change on phenology across a species’ range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population. Intra-specific variations may contribute to heterogeneous responses to climate change across a species’ range. Here, the authors investigate the phenology of two bird species across their breeding ranges, and find that their sensitivity to temperature is uncoupled from exposure to climate change.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29635-4