Provably unbounded memory advantage in stochastic simulation using quantum mechanics

Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory avail...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2017-10, Vol.19 (10), p.103009
Hauptverfasser: Garner, Andrew J P, Liu, Qing, Thompson, Jayne, Vedral, Vlatko, Gu, mile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simulating the stochastic evolution of real quantities on a digital computer requires a trade-off between the precision to which these quantities are approximated, and the memory required to store them. The statistical accuracy of the simulation is thus generally limited by the internal memory available to the simulator. Here, using tools from computational mechanics, we show that quantum processors with a fixed finite memory can simulate stochastic processes of real variables to arbitrarily high precision. This demonstrates a provable, unbounded memory advantage that a quantum simulator can exhibit over its best possible classical counterpart.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/aa82df