The Impact of Temperature and Power Variation on the Optical, Wettability, and Anti-Icing Characteristics of AZO Coatings

The structural, wettability, and optical characteristics of aluminum-doped zinc oxide (AZO) thin films were studied with the objective of understanding the impact of deposition power and deposition temperature. Thin films were deposited using a radio frequency (RF) magnetron sputtering technique. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2024-04, Vol.14 (4), p.368
Hauptverfasser: Chauhan, Kamlesh V, Rawal, Sushant, Patel, Nicky P, Vyas, Vandan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structural, wettability, and optical characteristics of aluminum-doped zinc oxide (AZO) thin films were studied with the objective of understanding the impact of deposition power and deposition temperature. Thin films were deposited using a radio frequency (RF) magnetron sputtering technique. The power output of the RF was augmented from 200 to 260 W, and the temperature was increased from 50 to 200 °C, which led to the development of a (002) peak for zinc oxide. The study of film thickness was carried out using the Swanepoel envelope method from data obtained through the UV-Vis spectrum. An increase in surface roughness value was shown to be connected with fluctuations in temperature as well as increases in deposition power. The findings revealed that as deposition power and temperature increased, the value of optical transmittance decreased, ranging from 70% to 90% based on the deposition parameters within the range of wavelengths that extend from 300 to 800 nm. The wettability properties of the samples were studied, and the maximum contact angle achieved was 110°. A Peltier apparatus was utilised in order to investigate the anti-icing capabilities, which revealed that the icing process was slowed down 3.38-fold. This work extends the understanding of the hydrophobicity and anti-icing capabilities of AZO thin films, specifically increasing both attributes which provide feasible options for purposes requiring resistance to ice.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst14040368