Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D2
We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have pmm, pmg, pgg or cmm symmetry [1]. These symmetry groups are members of the crystal class D2 among the 17 two-dimensional sy...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2011-06, Vol.3 (2), p.325-364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have pmm, pmg, pgg or cmm symmetry [1]. These symmetry groups are members of the crystal class D2 among the 17 two-dimensional symmetry groups [2]. We display the algorithms’ output and give enumeration tables for small values of n. This work is a continuation of our earlier works for the symmetry groups p3, p31m, p3m1, p4, p4g, p4m, p6, and p6m [3–5]. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym3020325 |