Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D2

We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have pmm, pmg, pgg or cmm symmetry [1]. These symmetry groups are members of the crystal class D2 among the 17 two-dimensional sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2011-06, Vol.3 (2), p.325-364
Hauptverfasser: Fukuda, Hiroshi, Kanomata, Chiaki, Mutoh, Nobuaki, Nakamura, Gisaku, Schattschneider, Doris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe computer algorithms that produce the complete set of isohedral tilings by n-omino or n-iamond tiles in which the tiles are fundamental domains and the tilings have pmm, pmg, pgg or cmm symmetry [1]. These symmetry groups are members of the crystal class D2 among the 17 two-dimensional symmetry groups [2]. We display the algorithms’ output and give enumeration tables for small values of n. This work is a continuation of our earlier works for the symmetry groups p3, p31m, p3m1, p4, p4g, p4m, p6, and p6m [3–5].
ISSN:2073-8994
2073-8994
DOI:10.3390/sym3020325