Gene Cloning, Recombinant Expression, Characterization, and Molecular Modeling of the Glycolytic Enzyme Triosephosphate Isomerase from Fusarium oxysporum

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. (Fox) is a fungus of biot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2019-12, Vol.8 (1), p.40
Hauptverfasser: Hernández-Ochoa, Beatriz, Gómez-Manzo, Saúl, Alcaraz-Carmona, Erick, Serrano-Posada, Hugo, Centeno-Leija, Sara, Arreguin-Espinosa, Roberto, Cuevas-Cruz, Miguel, González-Valdez, Abigail, Mendoza-Espinoza, José Alberto, Acosta Ramos, Marcelo, Cortés-Maldonado, Leyda, Montiel-González, Alba Mónica, Pérez de la Cruz, Verónica, Rocha-Ramírez, Luz María, Marcial-Quino, Jaime, Sierra-Palacios, Edgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a . Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the gene from was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for K and V using the substrate GAP were 0.47 ± 0.1 mM, and 5331 μmol min mg , respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms8010040