Phosphorus‐Doped Graphene Aerogel as Self‐Supported Electrocatalyst for CO2‐to‐Ethanol Conversion

Electrochemical reduction of carbon dioxide (CO2) to ethanol is a promising strategy for global warming mitigation and resource utilization. However, due to the intricacy of C─C coupling and multiple proton–electron transfers, CO2‐to‐ethanol conversion remains a great challenge with low activity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2022-09, Vol.9 (25), p.e2202006-n/a
Hauptverfasser: Yang, Fangqi, Liang, Caihong, Yu, Haoming, Zeng, Zheling, Lam, Yeng Ming, Deng, Shuguang, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical reduction of carbon dioxide (CO2) to ethanol is a promising strategy for global warming mitigation and resource utilization. However, due to the intricacy of C─C coupling and multiple proton–electron transfers, CO2‐to‐ethanol conversion remains a great challenge with low activity and selectivity. Herein, it is reported a P‐doped graphene aerogel as a self‐supporting electrocatalyst for CO2 reduction to ethanol. High ethanol Faradaic efficiency (FE) of 48.7% and long stability of 70 h are achieved at −0.8 VRHE. Meanwhile, an outstanding ethanol yield of 14.62 µmol h−1 cm−2 can be obtained, outperforming most reported electrocatalysts. In situ Raman spectra indicate the important role of adsorbed *CO intermediates in CO2‐to‐ethanol conversion. Furthermore, the possible active sites and optimal pathway for ethanol formation are revealed by density functional theory calculations. The graphene zigzag edges with P doping enhance the adsorption of *CO intermediate and increase the coverage of *CO on the catalyst surface, which facilitates the *CO dimerization and boosts the EtOH formation. In addition, the hierarchical pore structure of P‐doped graphene aerogels exposes abundant active sites and facilitates mass/charge transfer. This work provides inventive insight into designing metal‐free catalysts for liquid products from CO2 electroreduction. P‐doped graphene aerogel is used as self‐supporting electrodes for favorable ethanol production from carbon dioxide (CO2) electroreduction with ethanol Faradaic efficiency (FE) and yield. This work can inspire the development of metal‐free electrocatalysts for C2+ production.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202202006