Accuracy of mobile digital teledermoscopy for skin self-examinations in adults at high risk of skin cancer: an open-label, randomised controlled trial

Skin self-examinations supplemented with mobile teledermoscopy might improve early detection of skin cancers compared with naked-eye skin self-examinations. We aimed to assess whether mobile teledermoscopy-enhanced skin self-examination can improve sensitivity and specificity of self-detection of sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet. Digital health 2020-03, Vol.2 (3), p.e129-e137
Hauptverfasser: Janda, Monika, Horsham, Caitlin, Vagenas, Dimitrios, Loescher, Lois J, Gillespie, Nicole, Koh, Uyen, Curiel-Lewandrowski, Clara, Hofmann-Wellenhof, Rainer, Halpern, Allan, Whiteman, David C, Whitty, Jennifer A, Smithers, B Mark, Soyer, H Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skin self-examinations supplemented with mobile teledermoscopy might improve early detection of skin cancers compared with naked-eye skin self-examinations. We aimed to assess whether mobile teledermoscopy-enhanced skin self-examination can improve sensitivity and specificity of self-detection of skin cancers when compared with naked-eye skin self-examination. This randomised, controlled trial was done in Brisbane (QLD, Australia). Eligible participants (aged ≥18 years) had at least two skin cancer risk factors as self-reported in the eligibility survey and had to own or have access to an iPhone compatible with a dermatoscope attachment (iPhone versions 5–8). Participants were randomly assigned (1:1), via a computer-generated randomisation procedure, to the intervention group (mobile dermoscopy-enhanced self-skin examination) or the control group (naked-eye skin self-examination). Control group and intervention group participants received web-based instructions on how to complete a whole body skin self-examination. All participants completed skin examinations at baseline, 1 month, and 2 months; intervention group participants submitted photographs of suspicious lesions to a dermatologist for telediagnosis after each skin examination and control group participants noted lesions on a body chart that was sent to the research team after each skin examination. All participants had an in-person whole-body clinical skin examination within 3 months of their last skin self-examination. Primary outcomes were sensitivity and specificity of skin self-examination, patient selection of clinically atypical lesions suspicious for melanoma or keratinocyte skin cancers (body sites examined, number of lesions photographed, types of lesions, and lesions missed), and diagnostic concordance of telediagnosis versus in-person whole-body clinical skin examination diagnosis. All primary outcomes were analysed in the modified intention-to-treat population, which included all patients who had a clinical skin examination within 3 months of their last skin self-examination. This trial was registered with the Australian and New Zealand Clinical Trials Registry, ACTRN12616000989448. Between March 6, 2017, and June 7, 2018, 234 participants consented to enrol in the study, of whom 116 (50%) were assigned to the intervention group and 118 (50%) were assigned to the control group. 199 participants (98 participants in the intervention group and 101 participants in the control group) attended
ISSN:2589-7500
2589-7500
DOI:10.1016/S2589-7500(20)30001-7