Punicalagin Protects against the Development of Methotrexate-Induced Hepatotoxicity in Mice via Activating Nrf2 Signaling and Decreasing Oxidative Stress, Inflammation, and Cell Death

Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-10, Vol.23 (20), p.12334
Hauptverfasser: Al-khawalde, Alayn’ Al-marddyah A., Abukhalil, Mohammad H., Jghef, Muthana M., Alfwuaires, Manal A., Alaryani, Fatima S., Aladaileh, Saleem H., Algefare, Abdulmohsen I., Karimulla, Shaik, Alasmari, Fawaz, Aldal’in, Hammad Khalifeh, Alanezi, Abdulkareem A., Althunibat, Osama Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite its effectiveness in treating inflammatory diseases and various malignancies, methotrexate (MTX) is well known to cause hepatotoxicity, which involves increased oxidative stress and inflammation, limiting its clinical use. Herein, we looked into the effect of punicalagin (PU), a polyphenolic molecule having a variety of health-promoting attributes, on MTX-induced hepatotoxicity in mice. PU (25 and 50 mg/kg/day) was given orally to the mice for 10 days, while a single dose of MTX (20 mg/kg) was injected intraperitoneally (i.p.) at day 7. The MTX-induced liver damage was demonstrated by remarkably higher transaminases (ALT and AST), ALP, and LDH, as well as significant histological alterations in hepatic tissues. MTX-injected mice also demonstrated increases in hepatic oxidative stress markers, including malondialdehyde (MDA) and nitric oxide (NO), with a concordant drop in glutathione (GSH) content and superoxide dismutase (SOD) and catalase (CAT) activities. PU significantly attenuated the MTX-induced serum transaminases, ALP and LDH elevations, and hepatic oxidative stress measures and boosted antioxidant defenses in the liver. Moreover, the liver of MTX-treated mice showed increases in NF-κB p65 expression, pro-inflammatory cytokine (IL-6 and TNF-α) levels, and pro-apoptotic protein (caspase-3 and Bax) expression, whereas Bcl-2 and Nrf2 expressions were reduced, which were all attenuated by PU treatment. Collectively, PU inhibits oxidative damage, inflammation, and apoptosis and upregulates Nrf2 in the liver of MTX-induced mice. Thus, these findings suggest that PU may have great therapeutic potential for the prevention of MTX-induced hepatotoxicity, pending further exploration in upcoming studies.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232012334