Development and assessment of artificial neural network models for direct normal solar irradiance forecasting using operational numerical weather prediction data
Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system operators due to the variability of resource and energy demand. Although numerical weather prediction (NWP) models can forecast solar radiation variables, they often have significant errors,...
Gespeichert in:
Veröffentlicht in: | Energy and AI 2024-01, Vol.15, p.100314, Article 100314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system operators due to the variability of resource and energy demand. Although numerical weather prediction (NWP) models can forecast solar radiation variables, they often have significant errors, particularly in the direct normal irradiance (DNI), which is especially affected by the type and concentration of aerosols and clouds. This paper presents a method based on artificial neural networks (ANN) for generating operational DNI forecasts using weather and aerosol forecasts from the European Center for Medium-range Weather Forecasts (ECMWF) and the Copernicus Atmospheric Monitoring Service (CAMS), respectively. Two ANN models were designed: one uses as input the predicted weather and aerosol variables for a given instant, while the other uses a period of the improved DNI forecasts before the forecasted instant. The models were developed using observations for the location of Évora, Portugal, resulting in 10 min DNI forecasts that for day 1 of forecast horizon showed an improvement over the downscaled original forecasts regarding R2, MAE and RMSE of 0.0646, 21.1 W/m2 and 27.9 W/m2, respectively. The model was also evaluated for different timesteps and locations in southern Portugal, providing good agreement with experimental data. |
---|---|
ISSN: | 2666-5468 2666-5468 |
DOI: | 10.1016/j.egyai.2023.100314 |