Double parton correlations in mesons within AdS/QCD soft-wall models: a first comparison with lattice data

Double parton distribution functions (dPDFs), entering the double parton scattering (DPS) cross section, are unknown fundamental quantities encoding new interesting properties of hadrons. Here, the pion dPDFs are investigated within different holographic QCD quark models in order to access their bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2020-07, Vol.80 (7), p.1-22, Article 678
1. Verfasser: Rinaldi, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Double parton distribution functions (dPDFs), entering the double parton scattering (DPS) cross section, are unknown fundamental quantities encoding new interesting properties of hadrons. Here, the pion dPDFs are investigated within different holographic QCD quark models in order to access their basic features. Results of the calculations obtained within the AdS/QCD soft-wall approach, have been compared with predictions of lattice QCD evaluations of the pion two-current correlation functions. The present analysis confirms that double parton correlations, affecting dPDFs, are very important and not direct accessible from generalised parton distribution functions and electromagnetic form factors. The comparison between lattice data and quark model calculations unveils the relevance of the contributions of high partonic Fock states in the pion. Nevertheless, by using a complete general procedure, results of lattice QCD have been used, for the first time, to estimate the mean value of the so called σ eff , a relevant experimental observable for DPS processes. In addition, the results of the first calculations of the ρ meson dPDFs are discussed in order to make predictions.
ISSN:1434-6044
1434-6052
DOI:10.1140/epjc/s10052-020-8241-y