Task-based co-activation patterns reliably predict resting state canonical network engagement during development
Neurodevelopmental research has traditionally focused on development of individual structures, yet multiple lines of evidence indicate parallel development of large-scale systems, including canonical neural networks (i.e., default mode, frontoparietal). However, the relationship between region- vs....
Gespeichert in:
Veröffentlicht in: | Developmental cognitive neuroscience 2022-12, Vol.58, p.101160-101160, Article 101160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodevelopmental research has traditionally focused on development of individual structures, yet multiple lines of evidence indicate parallel development of large-scale systems, including canonical neural networks (i.e., default mode, frontoparietal). However, the relationship between region- vs. network-level development remains poorly understood. The current study tests the ability of a recently developed multi-task coactivation matrix approach to predict canonical resting state network engagement at baseline and at two-year follow-up in a large and cohort of young adolescents. Pre-processed tabulated neuroimaging data were obtained from the Adolescent Brain and Cognitive Development (ABCD) study, assessing youth at baseline (N = 6073, age = 10.0 ± 0.6 years, 3056 female) and at two-year follow-up (N = 3539, age = 11.9 ± 0.6 years, 1726 female). Individual multi-task co-activation matrices were constructed from the beta weights of task contrasts from the stop signal task, the monetary incentive delay task, and emotional N-back task. Activation-based predictive modeling, a cross-validated machine learning approach, was adopted to predict resting-state canonical network engagement from multi-task co-activation matrices at baseline. Note that the tabulated data used different parcellations of the task fMRI data (“ASEG” and Desikan) and the resting-state fMRI data (Gordon). Despite this, the model successfully predicted connectivity within the default mode network (DMN, rho = 0.179 ± 0.002, p |
---|---|
ISSN: | 1878-9293 1878-9307 |
DOI: | 10.1016/j.dcn.2022.101160 |