Foci of Future Studies on Abiotic Stress Tolerance of Maize in the Era of Post-Genomics
Genetic and metabolic engineering approaches are powerful tools for improving the tolerance of maize to abiotic stresses because they are faster and can afford greater control over agronomically useful traits. However, in-depth understanding of the molecular mechanisms controlling response to abioti...
Gespeichert in:
Veröffentlicht in: | Journal of Integrative Agriculture 2012-08, Vol.11 (8), p.1236-1244 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Genetic and metabolic engineering approaches are powerful tools for improving the tolerance of maize to abiotic stresses because they are faster and can afford greater control over agronomically useful traits. However, in-depth understanding of the molecular mechanisms controlling response to abiotic stresses is the prerequisite for successful implementation of these strategies. A great flaw to dissect the biological mechanisms by genome sequencing is that genome sequencing approach could not reflect real-time molecular actions of plants especially under the stresses because the living organisms rarely live in unchanging environments. Post-genomics such as transcriptomics, metabolomics, and proteomics can generate knowledge that is closer to the biological processes. With the development of post-genomics, it can be expected that voluminous data will be generated. This paper proposes that future research on maize stress tolerance in the era of post-genomics should focus on metabolomics and proteomics; stress tolerance of whole plant rather than individual tissues or organs; coordination of expression of genes among tissues; characterization of promoters of stress-responsive genes; interrelation between mechanisms for tolerance to, and growth recovery from the stress; hexose metabolism as well as the glycolysis pathway; and foundation genotypes. |
---|---|
ISSN: | 2095-3119 2352-3425 |
DOI: | 10.1016/S2095-3119(12)60120-8 |