Optimal Integration of Distribution Network Reconfiguration and Conductor Selection in Power Distribution Systems via MILP
Power distribution systems (PDS) comprise essential electrical components and infrastructure that facilitate the delivery of electrical energy from a power transmission system to end users. Typically, the topology of distribution systems is radial, so that power goes from the substations to end user...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-10, Vol.16 (19), p.6998 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Power distribution systems (PDS) comprise essential electrical components and infrastructure that facilitate the delivery of electrical energy from a power transmission system to end users. Typically, the topology of distribution systems is radial, so that power goes from the substations to end users through main lines or feeders. However, the expansion of new feeders to accommodate new users and ever-growing energy demand have led to higher energy losses and deterioration of the voltage profile. To address these challenges, several solutions have been proposed, including the selection of optimal conductors, allocation of voltage regulators, utilization of capacitor banks, implementation of distributed generation, and optimal reconfiguration. Although reconfiguring the network is the most cost-effective approach, this solution might not be sufficient to completely minimize technical losses and improve system performance. This paper presents a novel approach that combines optimal distribution network reconfiguration (ODNR) with optimal conductor selection (OCS) to minimize power losses and enhance the voltage profiles of PDS. The key contribution lies in the integration of the ODNR and OCS into a single MILP problem, ensuring the attainment of globally optimal solutions. The proposed model was tested with benchmark 33-, 69-, and 85-bus test systems. The results allowed us to conclude that the combined effect of ODNR and OCS presents better results than when any of these approaches are applied either separately or sequentially. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16196998 |