Platicon microcomb generation using laser self-injection locking

The past decade has witnessed major advances in the development and system-level applications of photonic integrated microcombs, that are coherent, broadband optical frequency combs with repetition rates in the millimeter-wave to terahertz domain. Most of these advances are based on harnessing of di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-04, Vol.13 (1), p.1771-9, Article 1771
Hauptverfasser: Lihachev, Grigory, Weng, Wenle, Liu, Junqiu, Chang, Lin, Guo, Joel, He, Jijun, Wang, Rui Ning, Anderson, Miles H., Liu, Yang, Bowers, John E., Kippenberg, Tobias J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The past decade has witnessed major advances in the development and system-level applications of photonic integrated microcombs, that are coherent, broadband optical frequency combs with repetition rates in the millimeter-wave to terahertz domain. Most of these advances are based on harnessing of dissipative Kerr solitons (DKS) in microresonators with anomalous group velocity dispersion (GVD). However, microcombs can also be generated with normal GVD using localized structures that are referred to as dark pulses, switching waves or platicons. Compared with DKS microcombs that require specific designs and fabrication techniques for dispersion engineering, platicon microcombs can be readily built using CMOS-compatible platforms such as thin-film (i.e., thickness below 300 nm) silicon nitride with normal GVD. Here, we use laser self-injection locking to demonstrate a fully integrated platicon microcomb operating at a microwave K-band repetition rate. A distributed feedback (DFB) laser edge-coupled to a Si 3 N 4 chip is self-injection-locked to a high- Q ( > 10 7 ) microresonator with high confinement waveguides, and directly excites platicons without sophisticated active control. We demonstrate multi-platicon states and switching, perform optical feedback phase study and characterize the phase noise of the K-band platicon repetition rate and the pump laser. Laser self-injection-locked platicons could facilitate the wide adoption of microcombs as a building block in photonic integrated circuits via commercial foundry service. ’Here the authors provide the demonstration of platicon comb generation in an integrated photonic chip using laser self-injection locking, They take advantage of platicons generation in normal GVD resonators, which significantly relaxes the material and geometry design restrictions
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29431-0